lame	Date	Period
Conde	GAS WARE	
Heat Energy ————————————————————————————————————		
How much heat is required when 6.0 grams of wat on page 308 of your text)		point? (Use Table 11.5 xothermic (circle one)
How much heat is required when 6.0 grams of wat page 308 of your text)		oint? (Use Table 11.5 o xothermic (circle one)
A 3.0 gram sample of AI (1) is heated up to its boilin are added to boil away the AI. Determine the mola		
	Endothermic or	Exothermic (circle one
How many grams of Cu can be changed from solid energy? Heat of Fusion of Cu is 13.0 kJ/mole.	*	by 6.27 kJ/mole of xothermic (circle one)

6. How much heat is required to change 14.5 g of mercury as a gas to a liquid? (Use the values found of the back of this worksheet for mercury)

Endothermic or Exothermic (circle one)

Physical properties of H₂O:

Melting Point. = 0.0°C	Boiling Point 100.°C		
Heat of fusion = $6.01 \frac{kJ}{mol}$	Heat of solidification = -6.01 $\frac{kJ}{mol}$		
Heat of vaporization = 40.7 $\frac{kJ}{mol}$	Heat of condensation = -40.7 $\frac{kJ}{mol}$	ts	boili
Specific heat (C _p) = $4.18 \frac{J}{1g*1°C}$			
		2	

1. Using the physical properties of water listed above, calculate the heat required to convert 20.0 g of $H_2O_{(s)}$ at its freezing point to $H_2O_{(l)}$.

Endothermic or Exothermic (circle one)

2. Using the physical properties of water listed above, calculate the number of calories required to convert 95.0g $H_2O_{(g)}$ to $H_2O_{(l)}$.

Endothermic or Exothermic (circle one)

Physical properties of Hg:

Melting Point. = -39°C	Boiling Point 357°C	
Heat of fusion = $2.34 \frac{kJ}{mol}$	Heat of solidification = -2.34 $\frac{kJ}{mol}$	
Heat of vaporization = 59.37 $\frac{kJ}{mol}$	Heat of condensation = -59.37 $\frac{kJ}{mol}$	
Specific heat (C _p) = $1.25 \frac{J}{1g*1°C}$		

3. Using the physical properties of mercury (Hg) listed above, calculate the number of calories required to convert 40.0 g of Hg $_{(I)}$ to Hg $_{(g)}$ at its boiling point.

Endothermic or Exothermic (circle one)

4. Calculate the amount of heat needed to convert 5.0 g of Hg $_{\mbox{\scriptsize (I)}}$ to Hg $_{\mbox{\scriptsize (s)}.}$

Endothermic or Exothermic (circle one)